Navigation

  • index
  • modules |
  • pandas 0.17.1 documentation »

Table Of Contents

  • What’s New
  • Installation
  • Contributing to pandas
  • Frequently Asked Questions (FAQ)
  • Package overview
  • 10 Minutes to pandas
  • Tutorials
  • Cookbook
  • Intro to Data Structures
  • Essential Basic Functionality
  • Working with Text Data
  • Options and Settings
  • Indexing and Selecting Data
  • MultiIndex / Advanced Indexing
  • Computational tools
  • Working with missing data
  • Group By: split-apply-combine
  • Merge, join, and concatenate
  • Reshaping and Pivot Tables
  • Time Series / Date functionality
  • Time Deltas
  • Categorical Data
  • Visualization
  • Style
  • IO Tools (Text, CSV, HDF5, ...)
  • Remote Data Access
  • Enhancing Performance
  • Sparse data structures
  • Caveats and Gotchas
  • rpy2 / R interface
  • pandas Ecosystem
  • Comparison with R / R libraries
  • Comparison with SQL
  • Comparison with SAS
  • API Reference
  • Internals
  • Release Notes

Search

Enter search terms or a module, class or function name.

pandas.isnull¶

pandas.isnull(obj)¶

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

Parameters:

arr : ndarray or object value

Object to check for null-ness

Returns:

isnulled : array-like of bool or bool

Array or bool indicating whether an object is null or if an array is given which of the element is null.

See also

pandas.notnull
boolean inverse of pandas.isnull

Navigation

  • index
  • modules |
  • pandas 0.17.1 documentation »
© Copyright 2008-2014, the pandas development team. Created using Sphinx 1.3.1.